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Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma which possess highly 
aggressive and heterogeneous. Despite advances in understanding heterogeneity and development of novel 
targeted agents, the prognosis of DLBCL patients remains unsatisfied. Lipids are crucial components of biological 
membranes and signal transduction while accumulating evidence has supported the vital roles of abnormal lipid 
metabolism in tumorigenesis. Furthermore, some related pathways could serve as prognostic biomarkers and 
potential therapeutic targets. However, the clinical significance of abnormal lipid metabolism reprogramming in 
DLBCL has not been investigated. In the current study, we developed a prognostic risk model for DLBCL based on the 
abnormal expressed lipid metabolism genes and moreover based on our risk model we classified patients with DLBCL 
into novel subtypes and identified potential drugs for DLBCL patients with certain lipid metabolism profiles.

Methods We utilized univariate Cox regression analysis to identify the prognosis-related lipid metabolism genes, and 
then performed LASSO Cox regression to identify prognostic related lipid metabolism related genes. Multivariate cox 
regression was used to establish the prognostic model. Patients were divided in to high and low risk groups based on 
the median risk score. Immune cell infiltration and GSEA were used to identify the pathways between high and low 
risk groups. Oncopredict algorithm was utilized to identify potential drug for high-risk patients. In vitro cell apoptosis 
and viability analysis were employed to verify the specific tumor inhibition effects of AZD5153.

Results Nineteen survival related lipid metabolism genes TMEM176B, LAYN, RAB6B, MMP9, ATAD3B, SLC2A11, 
CD3E, SLIT2, SLC2A13, SLC43A3, CD6, SIRPG, NEK6, LCP2, CTTN, CXCL2, SNX22, BCL6 and FABP4 were identified and 
subjected to build the prognostic model which was further verified in four external microarray cohorts and one RNA 
seq cohorts. Tumor immune microenvironment analysis and GSEA results showed that the activation of MYC targets 
genes rather than immunosuppression contribute to the poor survival outcome of patients in the high-risk group. 
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Introduction
The most common and aggressive form of B cell lym-
phoma Diffuse large B-cell lymphoma (DLBCL) is fea-
tured by highly heterogeneous (Sehn and Salles 2021). 
The widely used “cell-of-origin” (COO) methodology 
defines two prominent subtypes termed germinal center 
B cell-like (GCB) and activated B cell-like (ABC) (Poletto 
et al. 2022). Nonetheless, the COO distinction does not 
fully account for the heterogeneous clinical outcomes 
and drug responses (Poletto et al. 2022; Wright et al. 
2020). Currently, although the R-CHOP (rituximab in 
combination with CHOP) chemotherapy is widely used 
as the first line regimen, approximately 30–40% relapse 
within the first 2 years of diagnosis (Coiffier et al. 2010; 
Tavakkoli and Barta 2023). Furthermore, first-line mul-
tiagent immunochemotherapy also fails to elicit a dura-
ble response in approximately one-third of patients with 
DLBCL (Schmitt et al. 2023). In this regard, the highly 
heterogeneous in terms of molecular and histological fea-
tures makes it difficult to predict prognosis and decide 
therapeutic strategies for patients with DLBCL (Nas-
toupil and Bartlett 2023; Hilton et al. 2023) thus pos-
ing major challenges in DLBCL treatment. Therefore, a 
comprehensive understanding of its molecular makeup 
is an urgent need to accurately predict the prognosis and 
develop specific therapeutic drugs.

Metabolic reprogramming represents one of the hall 
marks of cancers by facilitating tumor proliferation, inva-
sion, and metastasis (Xiao et al. 2023; Hanahan 2022). 
Among the three major metabolism pathways, lipid 
metabolism alteration is the most prominent metabolic 
alterations in cancer development (Jin et al. 2023; Gong 
et al. 2022; Yang et al. 2023; Broadfield et al. 2021). Lipids, 
including fatty acids, triglycerides, phospholipids et al. 
are not only vital components of biological membranes 
and energy resource but also play critical roles in cellular 
signaling pathway and shaping the tumor microenviron-
ment (Lim et al. 2022; Grabner et al. 2021). For example, 
tumor cells upregulate lipogenesis, and fatty acid oxida-
tion (FAO) to produce energy for proliferation (Koun-
douros and Poulogiannis 2020; Xu et al. 2021). Cancer 
stem cells maintain their stemness by reprogramming 
lipid metabolism(Yi et al. 2018). Lipids could also regu-
late the fate of T cells at the transcriptional, epigenetic, 

and post-translational levels (Lim et al. 2022). Therefore, 
abnormal lipid metabolism could be prognostic biomark-
ers and targeting the lipid metabolism regulating path-
way has been regarded as a promising strategy in cancer 
treatment (Bian et al. 2021).

Nevertheless, the possible clinical significance of 
abnormal lipid metabolism in DLBCL remains undeter-
mined. Therefore, to better understand the association 
between altered lipid metabolism and clinical outcome 
of DLBCL, we comprehensively investigated the expres-
sion pattern of lipid metabolism genes in DLBCL by inte-
grating survival data and gene expression from GEO and 
TCGA datasets. Based on lipid metabolism-based gene 
signature, we provide a model with high predictive effi-
cacy for predicting the survival of patients with DLBCL. 
Furthermore, using the lipid metabolism prognostic 
model we determined novel subtypes featured by distinct 
lipid metabolism profiles and found that drugs that com-
promising MYC target genes rather than immune check-
point inhibitors may be beneficial to DLBCL patients 
with specific lipid metabolism status.

Materials and methods
Data acquisition
Microarray and RNA-seq gene expression and the rel-
evant prognostic and clinicopathological data of DLBCL 
were downloaded from the public database Gene Expres-
sion Omnibus (GEO)  (   h t  t p s  : / / w  w w  . n c b i . n l m . n i h . g o v / 
g e o /     . ) (GSE10846, GSE31312, GSE181063, GSE32918, 
GSE53786 and GSE56315) and UCSC Xena  (   h t  t p s  : / / x  e n  
a b r o w s e r . n e t / d a t a p a g e s /     ) (TCGA_DLBCL). GSE56315 
data set which contains 55 tumor samples and 33 nor-
mal samples was used to identify differentially expressed 
genes (DEGs). After including samples with the criteria 
(1) histologically confirmed DLBCL; (2) initially treated 
with RCHOP or CHOP regimen; (3) overall survival (OS) 
time more than one month. The GSE181063, GSE10846, 
GSE31312, GSE32918 and GSE53786 included 811(Table 
S1), 400 (Table S2), 466(Table S3), 154 (Table S4) and 113 
(Table S5) tumor samples respectively.

Lipid metabolism-related genes (LMRGs) preparation
A total of 7286 LMRGs (Table S6) were obtained from 
the Molecular Signature Database (MsigDB  h t t p s : / / w w w . 

AZD5153, a novel bivalent BET bromodomain inhibitor which could inhibit the transcription of MYC and E2F exhibited 
specific antitumor function for cells with high-risk score.

Conclusions Our results provide the first lipid metabolism-based gene signature for predicting the survival of 
patients with DLBCL. Furthermore, by determining novel subtypes with our lipid metabolism prognostic model 
we illustrated that drugs that compromising MYC target genes rather than immune checkpoint inhibitors may be 
beneficial to DLBCL patients with certain lipid metabolism profiles.
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g s e a - m s i g d b . o r g /     ) (22) by interesting 176 individual  c o l l e 
c t i o n s (Table S7).

Identification of DEGs between DLBCL and normal tissue
The “Limma” package was used to identify GEGs in 55 
DLBCL samples and 33 normal samples. P < 0.01 and 
|log2 fold change (FC)|> 2 were utilized as the selection 
criteria.

Screening of prognostic related LMRGs
We first interested DEGs and LMRGs and then applied 
univariate Cox regression to identify prognostic related 
LMRGs using the GSE181063 data set (N = 811) with the 
criteria of P < 0.05 and 238 LMRGs were obtained. Then 
least absolute shrinkage and selection operator (LASSO) 
Cox regression model with 10-fold cross validation was 
further utilized to select the most powerful prognostic 
genes by minimizing the risk of over-fitting.

Prognostic model construction and validation
19 LMRGs were left to build a prognostic model using 
multivariate Cox regression and this model was further 
valid using 4 external microarray data sets GSE10846 
(N = 400), GSE31312 (N = 466), GSE32918 (N = 154) 
and GSE53786 (N = 113) and RNA seq data set TCGA_
DLBCL (N = 46).

Tumor microenvironment and immune cell infiltration 
analysis
The single-sample gene set enrichment analysis (ssGSEA) 
was performed to quantify the proportions and distri-
butions of tumor-infiltrating immune cells (TIICs) with 
“GSVA” package in R. We also calculated the immune, 
stromal and Estimate scores with “ESTIMATE” package 
in R. The expression of immune checkpoint molecules 
(PDL1,CTLA4,HAVCR2) were evaluated between high 
and low risk groups.

Functional analysis of DEGs between high and low risk 
groups
GESA analysis using the gene list (h.all.v2023.2.Hs.sym-
bols) was applied to investigate the alteration pathways 
between high and low risk groups.

Drug sensitivity analysis
Using the oncopredict package in R software, the sensi-
tivity score of each small molecule compound was calcu-
lated for each patient in the high-risk group and low-risk 
group. Then, we used PubChem  (   h t  t p s  : / / p  u b  c h e m . n c b i 
. n l m . n i h . g o v /     ) website to visualize the conformations of 
drugs in 3D.

Risk analysis of DLBCL cell lines
The expression data of seventeen DLBCL cell lines were 
downloaded from Cancer Cell Line Encyclopedia (CCLE, 
https:/ /portal s.broad inst itute.org/ccle/data). Cells were 
divided into high and low risk groups based on the 
LMRGs survival model.

Cell viability analysis
Human B cell lymphoma cells DOHH2 and Su-DHL-6 
were purchased from the Cell Bank of the Chinese Acad-
emy of Science (Shanghai, China) and were cultivated in 
RPMI- 1640 (Hyclone) supplemented containing 2 mM 
L-glutamine and 10% FBS (Life Technologies). DOHH2 
(High risk) and SU-DHL-6 (Low risk) cells were seeded 
into 96-well plates and subjected to AZD5153 treatment 
(10 nM,50 nM,100 nM). The cell viability was acquired 
at indicated time points using the CCK8 kit (BA00208, 
Bioss, China).

Cell apoptosis analysis
Apoptosis was determined by using FITC Annexin V 
Apoptosis Detection Kit (556547, BD Pharmingen, USA). 
Briefly, DOHH2 and SU-DHL-6 cells treated with 200 
nM AZD5153 were diluted at a concentration of 106 
cells/ml and stained with Annexin V and PI and sub-
jected to flowcytometry analysis (DxFLEX, Beckman-
coulter USA). The relative portion of Annexin V-positive 
cells was determined using the Flowjo software.

Statistical analysis
Statistical analysis was carried out in R version 4.4.0. Log-
rank test was used for univariate Cox regression analysis. 
Wilcoxon test was performed to assess the statistical sig-
nificance between two groups for the bioinformatic anal-
ysis and Student t test was applied for the cell apoptosis 
analysis. P < 0.05 denoted as statistically significant.

Results
Determination of differentially expressed LMRGs between 
normal and DLBCL samples
The flow chart shows the overall experimental design 
of this study (Fig. 1). A total of 7286 LMRGs (Table S6) 
were obtained from the Molecular Signature Database 
(MsigDB https://www.gsea-msigdb.org/) (22) by  i n t e 
r e s t i n g 176 individual collections (Table S7). We then 
screened the DEGs between normal and DLBCL patients 
in GSE56315 and a total of 2972 DEGs were identified 
and intersected with 7286 LMRGs and finally obtained 
1142 differentially expressed LMRGs.

Development and validation of the prognostic related 
LMRGs model
To further identify the prognostic related LMRGs, 
univariate Cox regression was first applied to the 

https://www.gsea-msigdb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://portals.broadinstitute.org/ccle/data
https://www.gsea-msigdb.org/
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training cohort GSE181063 data set (N = 811) with the 
criteria of P < 0.05 and 238 prognostic related LMRGs 
were obtained. Then LASSO Cox regression model with 
10-fold cross validation was further utilized to select the 
most powerful prognostic genes by minimizing the risk 
of over-fitting and 19 genes TMEM176B, LAYN, RAB6B, 
MMP9, ATAD3B, SLC2A11, CD3E, SLIT2, SLC2A13, 
SLC43A3, CD6, SIRPG, NEK6, LCP2, CTTN, CXCL2, 
SNX22, BCL6 and FABP4 were finally obtained (Fig. 2A, 
B). Patients were assigned to high-risk and low-risk 
groups according to the median risk score (Fig. 2 C). The 
prognosis of DLBCL patients in the low-risk group was 
better than that in the high-risk group in the train set 
(Fig. 2 C, middle). Survival curves indicated that DLBCL 
patients in the low-risk group had a significantly higher 
survival probability compared to the patients in high-risk 
group (p < 0.05) (Fig. 2D). ROC analysis showed that the 
area under the curve (AUC) at 1-,3-, 5-year was 0.741, 
0.755 and 0.763 for the training set separately (Fig.  2E). 
To confirm the efficacy of the LMRGs survival model, 
we validated it in four external DLBCL cohorts includ-
ing mRNA expression data from three microarray plat-
form and one RNA-seq platform. Similarly, in three data 
sets from microarray platform, high-risk patients exhib-
ited a significantly unfavorable prognosis, compared to 

low-risk patients (Fig.  3A, B, C; p < 0.001 for GSE10846 
(N = 400) and GSE31312 (N = 466); p < 0.05 for GSE32918 
(N = 154)). AUCs at 1-,3-, 5-year ranged from 0.619 to 
0.691 (Fig.  3D, E, F). As for the data set from RNA-seq 
platform, the prognosis of patients in the low-risk group 
was better than that in the high-risk group although the 
difference between two groups was not significant in the 
TCGA-DLBCL cohort with less samples (Figure S1A; 
p = 0.084 for TCGA-DLBCL (N = 46)). AUCs at 1-,3-, 
5-year was 0.674, 0.688 and 0.797 respectively (Figure 
S1B). Moreover, the risk score was positively associated 
with the International Prognostic Index (IPI) score and 
clinical stage (Figure S2). Clearly, our LMRGs survival 
model illustrated high predictive efficacy helpful in pre-
dicting the outcome of DLBCL patients.

Impact of LRS on immune TME landscape
Despite tumor cell per se, the microenvironment, includ-
ing immune cells and stromal cells, is believed to play 
a critical role in determining the survival of DLBCL. 
Therefore, to decipher the possible mechanism that led 
to the distinct clinical outcome between high-risk and 
low-risk groups we evaluated the immune score, stromal 
score and ESTIMATE score between two groups. Signifi-
cant differences in the infiltration of most immune cells 

Fig. 1 The flowchart of our research process
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Fig. 2 Identification of lipid metabolism related prognostic genes in DLBCL patients. (A,B) 19 Lipid metabolism related candidate genes were selected by 
LASSO Cox regression. (C) 811 patients in GSE181063 were divided into high and low risk group according to the median of risk score. (D) Kaplan-Meier 
analysis of overall survival in high and low risk groups. (E) Time-dependent ROC analysis of the lipid metabolism risk model. (F) Forest plot of 19 lipid 
metabolism related genes
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between the two groups were the infiltration levels of 
activated CD8+ T cells, natural killer (NK) cells, natural 
killer T (NKT) cells and Macrophages were decreased in 
high-risk group (Fig. 4A). Accordingly, the stromal score 
(P < 0.001), immune score (P < 0.001) and ESTIMATE 
score (P < 0.001) were decreased in high-risk group 
(Fig.  4B–C). Furthermore, the expression of immune 
checkpoint molecules PDL1 (P < 0.001), cytotoxic T 
lymphocytes associated antigen-4 (CTLA-4) (P < 0.001), 
and T cell immunoglobulin and mucin domain contain-
ing protein-3 (TIM-3, HAVCR2) (P < 0.001) were also 
downregulated in high-risk patients (Fig. 4E–G) and the 
risk score was negatively associated with the expression 
of CTLA4 and HAVCR2 (Fig.  4H). In the external vali-
dation cohorts GSE181046, the immune score (P < 0.001) 
and ESTIMATE score (P < 0.001) were decreased in 

high-risk group (Figure S3 B, C). On the contrary, the 
expression of these immune checkpoint molecules were 
upregulated in DLBCL tissues compared with normal 
tissues (Figure S4). Taken together these data suggested 
that immunosuppression may not contribute to the poor 
survival outcome of patients in the high-risk group and 
other potential mechanisms should contributed to the 
decreased survival time of patients in the high-risk group.

Functional enrichment analysis according to risk groups
We then performed GSEA enrichment analysisbetween 
the high-risk and low-risk groups in the training set and 
the validation set, respectively. In the training set, top 
activated pathway were Hallmark E2F targets, Hallmark 
MYC Targets V1 and Hallmark MYC Targets V2 (Fig. 5A, 
D). Consistently in the external validation set GSE10846 

Fig. 4 Tumor Microenvironment and immune cell infiltration analysis in train set GSE181063. (A) Differences between the high and low risk groups in 
the abundance of infiltrating immune cells. The red box: risk high; The blue box: risk low. (B,C,D) Differences in Stromal score, Immune Score and Estimate 
score between the high and low risk groups. (E,F,G) The expression of immune checkpoint molecules (PDL1,CTLA4,HAVCR2) were evaluated between 
high and low risk groups. (H) Correlation of risk score and immune checkpoint molecules (PDL1,CTLA4,HAVCR2)

 

Fig. 3 Validation of the LMRGs risk model. (A, B, C, D) Kaplan-Meier analyses of overall survival for patients in high and low risk groups in external valida-
tion cohorts, GSE10846, GSE31312, GSE32918 and GSE53786. (E, F, G,H) Time-dependent ROC analyses of the risk model in external validation cohorts
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and GSE32918, top 3 activated pathway were Hallmark 
MYC Targets V1, Hallmark Oxidative Phosphorylation 
and Hallmark MYC Targets V2 (Fig. 5B, E) and Hallmark 
E2F Targets, Hallmark MYC Targets V1 and Hallmark 
MYC Targets V2 separately (Fig. 5C, F). This observation 
was also confirmed in TCGA-DLBCL cohort (Figure S4 
C). While the GSEA result between normal and DLBCL 
patients sample showed the top activated pathways were 
Oxidative Phosphorylation, E2F targets, interferon-
gamma response and epithelial mesenchymal transition 
(Figure S5) which was different from that of subtypes 
base on our risk model. Collectively, the activation of 
MYC targets genes is crucial for the poor survival out-
come of patients in the high-risk group.

Evaluating the therapeutic response in the high-risk and 
low-risk group
To further find possible drugs for patients in high-risk 
group based on our our LMRGs survival model, we 
estimate the chemotherapeutic response based on the 
half-maximal inhibitory concentration (IC50) available 
in the genomics of drug sensitivity in cancer (GDSC) 
database using the oncopredict algorithm. A total of 110 
small molecular compounds with significantly different 

responses (P < 0.01) were identified between high-and 
low-risk groups in our study. Based on our GSEA anal-
ysis which indicated that the activation of MYC targets 
genes is crucial for the poor survival outcome of patients 
in the high-risk group, we choose AZD5153 which could 
inhibit the transcription of MYC and E2F by targeting 
BRD4 bromodomains (Rhyasen et al. 2016) for in vitro 
drug sensitivity analysis since the patients with high-risk 
based on our LMRGs survival model are more sensitive 
to AZD5153 as manifested by lower IC50 (Fig. 6A).

In vitro evaluation of drug sensitivity
To validate the drug sensitivity of AZD5153, we divided 
the seventeen DLBCL cell lines into high and low risk 
groups based on the LMRGs survival model. DOHH2 
(High risk) and SU-DHL-6 (Low risk) cells were seeded 
into 96-well plates and subjected to AZD5153 treatment. 
DOHH2 cells were more sensitive to AZD5153 treat-
ment as the presence of more apoptotic cells (Fig. 7A-C) 
and compromised cell viability (Fig. 7D). Taken together 
these in vitro data suggested that the antitumor activity 
of AZD5153 might be specific to patients with certain 
lipid metabolism profiles.

Fig. 5 GSEA analysis of differential expressed genes between high and low risk group. (A,D) GSEA analysis of train set GSE181063 and Top3 activated 
pathway were HALLMARK E2F TARGETS, HALLMARK MYC TARGETS V1 and HALLMARK MYC TARGETS V2. (B,E) GSEA analysis of external validation set 
GSE10846 and Top3 activated pathway were HALLMARK MYC TARGETS V1, HALLMARK OXIDATIVE PHOSPHORYLATION and HALLMARK MYC TARGETS 
V2. (C,F) GSEA analysis of external validation set GSE32918 and Top3 activated pathway were HALLMARK E2F TARGETS, HALLMARK MYC TARGETS V1 and 
HALLMARK MYC TARGETS V2
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Discussion
Clinically, the prognosis of DLBCL patients is often 
prospectively predicted using the IPI score (Jelicic et al. 
2023), however, due to the internal heterogeneous even 
patients with DLBCL at the same IPI risk stages dem-
onstrate different clinical outcomes as manifested by 
approximately 30–40% relapse occurred within the first 2 
years upon diagnosis with the R-CHOP regimen (Coiffier 
et al. 2010; Tavakkoli and Barta 2023) and even multia-
gent immunochemotherapy also fails to elicit a durable 
response in approximately one-third of patients with 
DLBCL (Schmitt et al. 2023). Since the traditional IPI 
score cannot adequately predict the prognosis of DLBCL 
and the molecular heterogeneity of DLBCL poses great 
challenges to predict disease progression and precision 
therapy, thus developing more reliable strategies for 
subtype identification and prognostic classification is in 
urgent need (Ruppert et al. 2020; Wight et al. 2018).

In the present study we established a 19 LMRGs risk 
model with high predictive efficacy. We initially obtained 
a total of 7286 LMRGs by integrating 176 individual col-
lections from the MsigDB while studies on lipid metabo-
lism signature in lung cancer, Glioma and Acute myeloid 

leukemia (AML) only include 1133,471 and 1045 genes 
respectively (Li et al. 2022, 2023; Zhu et al. 2022). This 
model was validated in four external DLBCL cohorts 
including mRNA expression data from three microarray 
platform and one RNA-seq platform and demonstrated 
a high predictive efficacy. Furthermore, based on the 
19 LMRGs risk model we could determine novel sub-
types with distinct lipid metabolism profiles and strati-
fied patients into high and low risk status. Patients with 
high-risk score showed high IPI score and advanced 
clinical stage, suggesting a tight association with disease 
progression.

To unveil the possible mechanism that led to the dis-
tinct clinical outcome between high-risk and low-risk 
groups, we firstly analyzed the functions of the identified 
lipid metabolism genes separately and identified 3 hub 
genes (CD6, CD3E and LCP2) using STRING and Cyto-
scape. These hub genes are downregulated in the high-
risk group while they are mainly responsible for the TCR 
mediated T cell activation which is distinct from immune 
check point (PDL1, CTLA4, HAVCR2) mediated immune 
repression (Deng et al. 2024; Stelzer et al. 2016; Edwards 
et al. 2023). Furthermore FABP4, a lipid chaperone 

Fig. 6 The screened drugs for DLBCL treatment in high and low risk groups. (A) IC 50 value of AZD5153 between high and low risk groups. (B) chemical 
structure of AZD5153
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protein, could promote ovarian cancer metastasis and 
drug resistance (Mukherjee et al. 2020). In response to 
lipid related inflammation, CXCL2 could be upregulated 
and promote cancer progression (Plastira et al. 2020; 
Zhang et al. 2023). On the other hand, some genes’ func-
tion such as SNX22 and SLC2A13 were scarcely reported 
in cancer. Since the hub genes are all related to the T cell 
inhibition we then evaluated the tumor immune micro-
environment (TIM) by examining the types of infiltrated 
immune cells and calculating immune score, stromal 
score and ESTIMATE score since TIM is believed to play 
a critical role in progression of DLBCL (Sehn and Salles 
2021; Colombo et al. 2022; Autio et al. 2021). Interest-
ingly, in the high-risk group the infiltration levels of acti-
vated CD8+ T cells and effector memory CD8+ T cells 
were inhibited and the stromal score, immune score and 
ESTIMATE score were decreased. These results sug-
gested insufficient immune cell infiltration. Recent stud-
ies highlight the significant roles of lipid metabolism 
reprogramming in regulating CD8+ T cell behaviors in 
tumor progression (Lim et al. 2022; Wang et al. 2023). 
Activated CD8+ T cell plays a critical role in anti-tumor 
immunity (St Paul and Ohashi 2020; Koh et al. 2023) and 

memory CD8+ T cell can maintain its proliferation prop-
erty and make supplementation for effector CD8+ T cell 
(Sallusto et al. 2004). Except for insufficient CD8+ T infil-
tration, T cell exhaustion featured by upregulating inhibi-
tory receptors like PD-1, CTLA-4 and TIM-3 also paved 
the way for the immune escape of tumor cell (Wherry 
2011). However, the expression of these inhibitory mol-
ecules were downregulated in high-risk patients and the 
risk score was negatively associated with the expression 
of CTLA4 and TIM-3. On the contrary, the expression of 
these immune checkpoint molecules were upregulated in 
DLBCL tissues compared with normal tissues suggest-
ing a very distinct immune landscape for patients with 
different subtypes of DLBCL. Taken together these data 
suggested that monoclonal antibody targeting immune 
checkpoint molecules may not be beneficial to the 
patients with certain lipid metabolism profiles and clini-
cal application of immune checkpoint inhibitors (ICIs) 
should consider the specific gene expression background 
of the patients for precise medicine.

To figure out the possible mechanisms of the decreased 
survival in high-risk group, GSEA enrichment analysis 
was performed both in the training set and the validation 

Fig. 7 Cell viability and apoptosis analysis upon treatment of AZD5153. (A-C) DOHH2 (risk high) cells were sensitive to AZD5153 compared with SU-
DHL-6 (risk low) cells as shown by more apoptotic cells treated under the same drug concentration. (D) Under the same drug concentration, SU-DHL-6 
cells demonstrated high cell viability compared with DOHH2 cells
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set, respectively since GSEA would not leave out genes 
that was not statistically different but do possess biologi-
cal function (Subramanian et al. 2005). Very consistently, 
the activation of MYC target genes was observed in the 
training set and in the validation set regardless of the 
source of the expression data (Microarray or RNA-seq) 
but not in the GSEA result between normal and DLBCL 
patients’ sample, suggesting the distinct mechanism base 
on the molecular subtypes of DLBCL (Song et al. 2023). 
Accordingly, a recent study unveiled a novel metabolic 
function of MYC in regulation of fatty acid synthesis in 
prostate cancer, indicate that inhibition of fatty acid syn-
thesis by targeting MYC ACLY/ACC1/FASN axis may be 
a viable strategy for prevention and/or therapy of pros-
tate cancer(Singh et al. 2021).

To provide specific drugs for patients with certain 
lipid metabolism profiles, we then estimate the chemo-
therapeutic response based on the IC50 available in the 
genomics of drug sensitivity in cancer (GDSC) database 
using the oncopredict algorithm (Maeser et al. 2021). 
A total of 110 small molecular compounds with signifi-
cantly different responses were identified. Based on our 
GSEA analysis which indicated that the activation of 
MYC targets genes is crucial for the poor survival out-
come of patients in the high-risk group, we choose 
AZD5153 which could inhibit the transcription of MYC 
and E2F by targeting BRD4 bromodomains (Rhyasen 
et al. 2016) as potential candidate and consistently, a 
recent study showed that BRD4 inhibition sensitizes dif-
fuse large B-cell lymphoma cells (Schmitt et al. 2023). To 
validate the drug sensitivity of AZD5153, we divided the 
seventeen DLBCL cell lines into high and low risk groups 
based on the LMRGs survival model and choose DOHH2 
(high-risk) and SU-DHL-6 (low-risk) cells for cell viability 
and apoptosis assays. The results showed that AZD5153 
demonstrated a specific anti-tumor effect on DOHH2 
cells. In summary we not only provide a model with high 
predictive efficacy for predicting the survival of patients 
with DLBCL but also demonstrated that drugs that com-
promising MYC target genes rather than ICIs may be 
beneficial to DLBCL patients with specific lipid metabo-
lism status. These results provide clues for the possible 
mechanisms of inefficient ICIs for partial patients with 
DLBCL and uncovered potential drugs for these patients.

There are still some limitations in our study: First, 
although we used four external microarray cohorts and 
one RNA-seq cohort, more extensive validation using 
larger and diverse patient populations would strengthen 
the conclusions. Second, the possible mechanisms by 
which the MYC targets genes are activated in the high-
risk group remained unclear. Therefore, future research 
studies should recruit more patients to validate the 
model. For clinical application PDX-mice model should 
be used to verified the efficacy of AZD5153 in high-risk 

DLBCL patients after which clinical trials could be imple-
mented to confirm the anti-tumor effects of AZD5153 
for high-risk patients. Fortunately, a recent study pro-
vided the details of AZD5153 clinical application such as 
the doze, MDT, pharmacodynamics and toxicities which 
provide us with valuable guide for our own clinical trials 
in the near future(Hamilton et al. 2023).
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