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Introduction
Hypertrophic cardiomyopathy (HCM) is the most com-
mon heritable cardiovascular disorder characterized by 
left ventricular hypertrophy (LVH), usually without the 
left ventricular (LV) cavity enlargement (Marian and 
Braunwald 2017). The clinical manifestations of HCM are 
highly heterogeneous, with primary symptoms includ-
ing chest pain, dyspnea, palpitation, and syncope (Tuohy 
et al. 2020), and it is an important cause of arrhythmical 
sudden cardiac death, heart failure and atrial fibrillation 
in young people. Globally, the incidence rate of HCM 
is over 1/500 (Jia et al. 2019), affecting both males and 
females(Veselka et al. 2021). At present, the treatment of 
hypertrophic cardiomyopathy mainly aims at alleviating 
symptoms, reducing complications, and preventing sud-
den death. The therapeutic drugs for HCM are limited, 
and these drugs neither can prevent the disease from 
progressing, nor can they effectively reduce the incidence 
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Abstract
Hypertrophic cardiomyopathy (HCM) is one of the most common cardiovascular diseases with no effective 
treatment due to its complex pathogenesis. A novel cell death, disulfidptosis, has been extensively studied in 
the cancer field but rarely in cardiovascular diseases. This study revealed the potential relationship between 
disulfidptosis and hypertrophic cardiomyopathy and put forward a predictive model containing disulfidptosis-
associated genes (DRGs) of GYS1, MYH10, PDMIL1, SLC3A2, CAPZB, showing excellent performance by 
SVM machine learning model. The results were further validated by western blot, RNA sequencing and 
immunohistochemistry in a TAC mice model. In addition, resveratrol was selected as a therapeutic drug targeting 
core genes using the CTD database. In summary, this study provides new perspectives for exploring disulfidptosis-
related biomarkers and potential therapeutic targets for hypertrophic cardiomyopathy.
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of complications. One particular roadblock is the limited 
understanding of particular mechanisms in HCM.

Regulated cell death programs, including apoptosis, 
necroptosis, cuproptosis, ferroptosis, and others, play an 
essential role in the occurrence and development of car-
diovascular diseases (Chen et al. 2023a, b; Amgalan et al. 
2017; Del Re et al. 2019; Fang et al. 2020, 2023; Weng et 
al. 2023). In 2023, Liu et al. (Liu et al. 2023) proposed a 
new form of cell death called disulfidptosis. Under the 
condition of glucose starvation, disulfide accumulates 
continuously in cells with high expression of solute car-
rier family 7 member A11 (SLC7A11), inducing disulfide 
stress and actin collapse, ultimately destroying cytoskel-
eton structure and leading to cell death. Moreover, inhib-
itors of ferroptosis, apoptosis, necrosis and autophagy 
could not protect cells from glucose starvation-induced 
death, highlighting the uniqueness of disulfidptosis(Liu et 
al. 2023).

Disulfidptosis has been mainly studied in cancer. 
Recently it was reported that loss of cardiac Ferritin H 
could facilitate cardiomyopathy via SLC7A11, a crucial 
protein in disulfidptosis, mediated ferroptosis, indicat-
ing the potential role of disulfidptosis in the development 
of cardiomyopathy (Fang et al. 2020). Another study 
revealed that in lysosomal storage diseases, autopha-
gic cell death could promote hypertrophic cardiomy-
opathy, demonstrating the relationship between cell 
death and HCM (Rabinovich-Nikitin and Kirshenbaum 
2021). However, the pathogenic genes of HCM are not 
fully clarified and the role of disulfidptosis-related genes 
(DRGs) in HCM has not been explored yet.

In this study, we used GSE36961 as the training data-
set, GSE141910 and GSE160997 as validation datasets to 
develop and validate an HCM prediction model based 
on DRGs. Furthermore, immune infiltration analysis 
revealed the relationship between DRGs-related immune 
processes and HCM. A completing endogenous RNA 
(ceRNA) network and drug prediction model targeting 
the identified DRGs were also established. In addition, in 
vivo HCM model further confirmed our findings. These 
results identified a predictive model and therapeutic tar-
gets for HCM.

Materials and methods
Data collection and preparation
GSE36961 (a dataset of gene expressions and clinical 
data of 37 controls and 110 HCM patients), GSE141910 
(a dataset of gene expressions and clinical data of 162 
controls and 29 HCM patients) (Tan et al. 2020) and 
GSE160997 (a dataset of gene expressions of 5 con-
trols and 18 HCM patients) (Maron et al. 2021) were 
from the Gene Expression Omnibus (GEO) database. 
Among these, GSE36961 was used as a training dataset, 
GSE141910 and GSE160997 were merged as a validating 

dataset. All the datasets analysis were conducted using R 
software (version 4.4.0) unless otherwise specified, with 
differentially expressed genes (DEGs) were determined 
using the limma package (Ritchie et al. 2015) and Heat-
maps were generated using the heatmap package. The 
correlation analysis of differentially expressed DRGs were 
performed using the cor function in R 4.3.2.

Cluster analysis based on DRG expressions
Consistent cluster analysis was performed using the 
Consensus Cluster Plus package (Wilkerson and Hayes 
2010) to identify different DRG-related clusters. The 
optimal k value was determined according to the propor-
tion of ambiguous clustering (PAC). |log2 FC| > 1 and 
FDR < 0.05 as cut-off values between two DRG clusters.

Establishment of predictive model of HCM based on DRGs
A computational framework that combined four machine 
learning algorithms was adopted to construct a predic-
tive model of HCM. The machine learning algorithms 
included random forest (RF) (Asadi et al. 2021), extreme 
gradient boosting (XGB) (Kanda et al. 2022), generalized 
linear model (GLM) (Mahmoudi et al. 2023) and support 
vector machine (SVM) (Gold et al. 2005). The distribu-
tion of model residuals among four machine learning 
methods was visualized with the DALEX package. The 
Area Under the Curve (AUC) of the Receiver Operating 
Characteristic (ROC) curves was visualized using the 
pROC package (Wilkerson and Hayes 2010). The optimal 
machine learning method was selected according to the 
AUC of ROC and the five top genes were identified as 
core diagnostic genes.

Construction and validation of nomogram
A nomogram was constructed using the RMS R package 
(Harrell 2023) to validate and operationalize the predic-
tive capability of the models. Decision Curve Analysis 
(DCA) and calibration curves were employed to evaluate 
the predictive performance of the nomogram.

Analysis of immune cell infiltration in HCM patients
The infiltration of immune cells was evaluated with the 
CIBERSORT website (https:/ /cibers ort.sta nfor d.edu/), 
which is an analytical tool from the Alizadeh Lab and 
Newman Lab to impute gene expression profiles and 
provide an estimation of the abundances of member cell 
types in a mixed cell population, using gene expression 
data. Significance was established when p-values were 
less than 0.05, and the sum of.

the proportions of all 22 immune cell types in each 
sample equaled one.

https://cibersort.stanford.edu/
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Establishment of ceRNA network
The lncRNA-miRNA-mRNA ceRNA network was estab-
lished using MiRDB (https://www.mirdb.org/) (Chen and 
Wang 2020) to reverse the prediction of miRNAs corre-
sponding to the validated hub genes. The binding site and 
target genes of miRNAs were predicted by TargetScan 
database (Agarwal et al. 2015)  (   h t t p s : / / w w w . t a r g e t s c a n . o r 
g /     ) and miRanda database. Prediction of miRNA-lncRNA 
interactions was achieved from the SpongeScan database 
(Furió-Tarí et al. 2016)  (   h t t p : / / s p o n g e s c a n . r c . u f  . e d u     ) 
. The ceRNA network that integrated mRNAs, miRNAs, 
and lncRNAs was graphically represented using Cyto-
scape software (version 3.7.2).

Evaluation of candidate small-molecule drugs
Potential therapeutic drugs targeting the core DRGs 
were acquired from the CTD database  (   h t t p : / / c t d b a s e . o 
r g /     ) (Davis et al. 2021). A drug-gene network was estab-
lished by Cytoscape software (3.7.2). Molecular docking 
of candidate drugs and core genes was performed using 
Autodock Vina software V1.1.2 and visualized in Pymol 
V2.0.0.

HCM mouse model established by transverse aortic 
constriction (TAC)
6–8 weeks male C57 mice were purchased from Beijing 
Vital River Company. Mice were housed at a moderate 
temperature (22 ± 2  °C), appropriate humidity (55 ± 5%), 
a 12-hour light/dark cycle, and free access to food and 
water. Mice were acclimated to the circumstance for one 
week prior to all experiments and randomly divided into 
different groups (n = 3–5). All animal experiments were 
performed with the approval of the Institutional Animal 
Care and Use Committee of the Fourth Affiliated Hospi-
tal of Soochow University (2400321).

A HCM mouse model was used, as described pre-
viously (Guo et al. 2015). Briefy, male C57BL/6 mice 
were anesthetized with pentobarbital sodium with a 
dose of 50  mg/kg. They were fixed on a heating pad in 
a supine position to maintain body temperature. The 
neck and chest were depilated with an animal shaving 
machine and disinfected with 75% ethanol. After tra-
cheal intubation, the breathing frequency of the mice 
was approximately 120 times per minute. The skin, pec-
toral muscle and intercostal muscle were cut from the 
second intercostal space in the heart and then the chest 
was enlarged. Microscopic tweezers were used to sepa-
rate thymus and expose aortic arch. A short section of 
6.0 suture silk thread was placed under the aortic arch 
between the innominate artery and the left common 
carotid artery, and a slipknot was tied around the aortic 
arch. A fat-headed needle was inserted into the slipknot 
and placed parallel to the artery, and the slipknot was 
used to fasten the needle and the artery. Then the needle 

was quickly taken out to obtain the surgical stenosis of 
the aortic arch at the distal end of the innominate artery 
with a theoretical diameter of 0.4 mm. The thymus was 
reset, and the intercostal muscle and skin were sutured 
with 6.0 polypropylene suture. Then 0.2 ml penicillin was 
injected intraperitoneally. The operation for sham group 
is the same as the TAC group except that the aorta is 
not ligated. TAC causes moderate or severe mechanical 
obstruction of the left ventricular outfow, and evident 
left ventricular cardiac hypertrophy can be formed after 
4 weeks.

All animal experiments were approved by the Animal 
Care and Use Committee of The Fourth Affiliated Hospi-
tal of Soochow University, Suzhou Dushu Lake Hospital.

Cardiac echocardiography
The mice were anesthetized with 3% isofurane (Baxter 
International, USA) and fixed on the operating table. 
Ultrasound scanning (FUJIFILM VisualSonics, Canada) 
was performed to obtain cardiac parameters. Specific 
parameters for HCM include interventricular ventricu-
lar septum (diastole) (IVSD), interventricular ventricular 
septum (systole) (IVSS), left ventricular mass (LV mass), 
ejection fraction (EF) and fractional shortening (FS). Sta-
tistical analysis was conducted using the average values 
of three cardiac cycles.

RNA extraction and RNA-sequencing of mice heart tissue
Grinded mice heart tissue total RNA was extracted using 
RNA-Quick Purification Kit (ES Science) according to 
the manufacture’s instruction. Then 500 ng RNA was 
used to prepare RNA-seq libraries with NEB Next Ultra 
II Direcrional RNA library Prep Kit (NEB, cat# E7760L). 
Equal quantities of cDNA were mixed for next sequenc-
ing (GENEWIZ, Suzhou, China).

Protein extraction from mouse heart tissue and western 
blot
After the mice’s hearts were taken out, appropriate vol-
ume of RIPA lysate (Beyotime) was added and ground 
into tissue suspension in a grinder. The tissue suspension 
was lysed on ice for 40 min, followed by centrifugation at 
13,000 rpm for 15 min. The supernatant was added with 
loading buffer (TAKARA) and boiled in a 100 ℃ metal 
bath for 10 min.

An equal amount of protein samples was electropho-
resed with SDS-PAGE gels (Epizyme Biotechnology) 
and then transferred onto a 0.45  μm PVDF membrane 
(Millipore). Blots were then blocked in 5% non-fat 
milk (Solarbio) at room temperature for 1 h, then incu-
bated with specific primary antibodies at 4℃ overnight: 
Anti-GYS1 (ProteinTech, 1:1000), Anti-MYH10 (Pro-
teinTech, 1:1000). Anti-SLC3A2 (ProteinTech, 1:1000), 
anti-CAPZB (ProteinTech, 1:1000). Anti-PDLIM1 

https://www.mirdb.org/
https://www.targetscan.org/
https://www.targetscan.org/
http://spongescan.rc.ufl.edu
http://ctdbase.org/
http://ctdbase.org/
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(ProteinTech, 1:1000). The next day, Blots were washed 
with 1×TBST for 15  min, 3 times, then incubated with 
HRP-linked secondary antibody (1:10000, CST) at room 
temperature for 1 h. The membranes were scanned with 
the ChemiDoc XRS+ (Bio-Rad, USA) and analyzed with 
Image Lab software.

Immunohistochemistry (IHC) for mouse heart tissue
Heart tissues collected from control and HCM model 
mice were fixed with formalin, embedded with paraf-
fin and cut into 4 μm pieces. The slices were fixed with 
10% neutral buffered formalin at room temperature for 
10 min, rinsed in frozen acetone at -20 ℃ for 10 min and 
dry. Then rinsed in methanol at -20℃ for 10 min, fixed 
with 3% formaldehyde at room temperature for 15  min 
and then fixed in methanol solution at -20 ℃ for 5 min. 
The slices were washed with 1xPBS twice, 5  min each 
time. Dewaxing: quickly put the slices into xylene for 2 
times, 5 min each. Gradient hydration: put slices in 100%, 
90%, 80% and 70% ethanol for 5  min, and put them in 
distilled water for 5 min. Endogenous peroxidase block-
ing: put slices in a wet box with 3% hydrogen peroxide 
at room temperature for 10  min, then put them in dis-
tilled water for 1 min. Antigen repair: put in 65 ℃ water 
bath for 10  min, and cool it to room temperature. Per-
meate with 0.3% Triton at room temperature for 15 min. 
Primary antibody: Add 100 µL Anti-GYS1 (ProteinTech, 
1:100), Anti-MYH10 (ProteinTech, 1:100). Anti-SLC3A2 
(ProteinTech, 1:100), anti-CAPZB (ProteinTech, 1:100). 
Anti-PDLIM1 (ProteinTech, 1:100), incubate at 4 ℃ 
overnight. The next day, the slices were washed with PBS 
buffer for 3  min×3 times. The secondary antibody was 
incubated at room temperature for 30  min. Add freshly 
prepared DAB chromogenic solution and incubate at 
room temperature for 5 ~ 8 min. Rinse with tap water and 
recolor with hematoxylin dye solution. Then, dehydrate 
with ethanol, transfer to xylene for 15 min. Neutral gum 
was dropped on the tissue and cover with a glass cover. 
After 24 h, they were observed and photographed under 
a microscope.

Hematoxylin Eosin (HE) staining
Heart tissues collected from control and HCM model 
mice were fixed with formalin, embedded with paraffin 
and cut into 4 μm pieces. Put paraffin slices into xylene 
I 10 min, xylene II 10 min, xylene III 10 min, anhydrous 
ethanol I 5 min, anhydrous ethanol II 5 min, 90% alcohol 
5 min, 80% alcohol 5 min, 70% alcohol 5 min, 50% alco-
hol 5 min for gradient dewaxing. Slices were stained with 
hematoxylin for 0.5–1  min, rinsed with tap water, dif-
ferentiated with 1% hydrochloric acid alcohol for several 
seconds, rinsed with tap water, then 1% ammonia water 
solution turned blue for 1 min, rinsed with running water 

for several seconds, dyed with eosin dye solution for sev-
eral seconds, and rinsed with running water.

MASSON staining
Mice heart tissue paraffin slices were put in xylene I 
5 min, xylene II 5 min, xylene III 5 min, anhydrous etha-
nol 1  min, 95% ethanol 1  min, 75% ethanol 1  min, and 
washed with tap water for several seconds. Then they 
were stained with the prepared Weigert iron hematoxy-
lin staining solution for 8 min. Slices were differentiated 
for 15  s with acidic ethanol differentiation solution and 
washed with water. Slices stained with masson bluing 
solution returned to blue for 5 min and were washed with 
distilled water for 1  min. Then, they were stained with 
Fuchsin Staining Solution for 5  min and washed with 
weak acid working solution for 1 min. Slices were washed 
with phosphomolybdic acid solution for 1 min and weak 
acid working solution for 1 min. Dyeing with aniline blue 
dye solution for 2  min and weakly pickling for 1  min. 
Dewatering transparency: slices were dehydrated quickly 
in 95% ethanol for 2–3 s, anhydrous ethanol for 5–10 s, 3 
times, xylene for 1–2 min, 3 times, and sealed with neu-
tral gum.

Statistics
Statistical analysis was performed using GraphPad Prism 
7 software. Results were presented as mean ± SD of 3 to 6 
parallel experiments. Unpaired Student’s t-test was used 
for comparisons between two groups after normal distri-
bution. *p < 0.05, **p < 0.01, ns (non-significant).

Results
DRGs expression and immune infiltration analysis of HCM 
patients
To investigate the relationship between HCM and disul-
fidptosis, we designed the corresponding experimen-
tal workfow, as illustrated in Fig.  1. First, we selected 
24 DRGs based on previous literatures (Liu et al. 2023; 
Machesky 2023) and analyzed the difference in the 
expression of DRGs between healthy people and HCM 
patients in GSE36961 dataset. Comparative analysis 
revealed increased expression levels on GYS1, NDUFS1, 
NDUFA11, DSTN, MYH10, PDLIM1 and OXSM, along 
with decreased expression levels on SLC3A2, RNP1, 
ACTIN4, ACTB, CAPZB, FLNA, IQGAP1, MYH9 
and TLN1 (Fig. 2A and B). In addition, we conducted a 
thorough correlation analysis of differentially expressed 
DRGs to explore their potential roles in HCM. Notably, 
some DRGs showed significant positive correlations, 
such as ACTB and MYH9, SLC3A2 and RPN1, CAPZB 
and ACTB. At the same time, negative correlations 
also existed between these DRGs such as NDUFS1 and 
MYH9, NDUFS1 and ACTB (Fig. 2C).
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Additionally, an immune infiltration analysis was per-
formed to explore the difference of immune infiltration 
between HCM patients and healthy people (Fig.  2D). 
Among the total 22 immune cell types, 7 immune cells 
showed altered infiltration patterns in HCM patients, 
including increased infiltration of naïve B cells, regula-
tory T cells (Tregs), gama delta T cells, resting NK cells 
and M2 macrophages, and decreased infiltration of 
monocytes and activated dendritic cells (Fig.  2E). Fur-
thermore, correlation analysis revealed disulfidptosis in 
naïve B cells, activated dendritic cells, neutrophils, acti-
vated NK cells, naïve CD4+ T cells and CD8+ T cells 
(Fig. 2F). These findings suggested that the potential role 
of disulfidptosis and immune cell infiltration as impor-
tant etiological factors in HCM patients

Identification of HCM disulfidptosis cluster
To better understand the expression pattern of DRGs 
in HCM patients, consensus cluster analysis was con-
ducted for 16 differentially expressed DRGs. The con-
sensus index exhibited a stable fuctuation within the 
range of 0.2–0.6 (Fig.  3A and B). By varying the cluster 
number (k) from 2 to 9, the area under the CDF curve 

depicted significant differences between clusters (k and 
k-1) (Fig.  3C). As illustrated in Fig.  3D, a high consis-
tency score (> 0.9) was observed only when k = 2. Based 
on the consensus matrix heatmap, we divided the 109 
patients into two distinct clusters, denoted as cluster 1 
(n = 40) and cluster 2 (n = 69) (Fig. 3E). DRGs expression 
demonstrated pronounced differences between the two 
clusters. Cluster 1 exhibited increased expressions of 
GYS1, RPN1, ACTN4, ACTB, IQGAP1, MYH10, MYH9 
and TLN1, while cluster 2 had elevated expression of 
NDUFS1 and DSTN (Fig. 3F and G).

Furthermore, immune cell infiltration analysis was con-
ducted between the two clusters, which showed elevated 
infiltration of follicular helper T cells, M2 macrophages, 
neutrophils and reduced infiltration of resting mast 
cells in cluster 1 compared with cluster 2 (Figures S1 A 
and B). Gene Ontology (GO) analysis of differentially 
expressed genes indicated that several cellular processes 
up- or down-regulated in cluster 2 compared to cluster 
1. Up-regulated processes included pathways related to 
the cytoskeleton, such as postsynaptic cytoskeleton orga-
nization, myosin complex, actin cytoskeleton, and colla-
gen fibril organization. While down-regulated processes 

Fig. 1 Schematic diagram of this study. The figure is created with BioRender.com 
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Fig. 2 Identification of DRG expressions and immune analysis in HCM patients (A) The expression pattern of DRGs in control people and HCM patients. 
(B) Heatmap of 16 differentially expressed DRGs between control and HCM patients. (C) The correlation pattern of 16 differentially expressed DRGs. (D) 
Heatmap of immune cell infiltration of control people and HCM patients. (E) The immune cell infiltration pattern of control people and HCM patients. (F) 
The correlation analysis between 16 DRGs and immune cells. * p< 0.05, ** p< 0.01
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were correlated with cell metabolism, such as carboxylic 
ester hydrolase activity, long chain fatty acid metabolic 
process, fatty acid deravitive binding. (Figure S2 A). In 
addition, KEGG pathway enrichment showed distinct 
biological processes between the two clusters. Clus-
ter 1 was enriched in cardiac muscle contraction, one 
carbon pool by folate, biosynthesis of unsaturated fatty 
acids, folate biosynthesis and so on. While cluster 2 was 

enriched in tight junction, focal adhesion, regulation of 
actin cytoskeleton, and ECM receptor interaction (Figure 
S2 B). These differences in gene expression and signaling 
pathways revealed distinct biological features between 
the two groups of HCM patients.

Fig. 3 Identification of disulfidptosis-related clusters in HCM. (A) Consensus clustering matrix when k = 2. (B, C) Representative cumulative distribution 
function (CDF) curves (B), CDF delta area curves (C). (D) The score of consensus clustering. (E) The distribution of two clusters. (F) The different expressions 
of 16 DRGs between cluster 1 and cluster 2. (G) The expression pattern of 16 DRGs is presented in the heatmap
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Construction and evaluation of machine learning models
To identify specific diagnostic markers for HCM, we 
employed four machine-learning models: SVM, RF, GLM 
and XGB. Residual visualization for each model in the 
training dataset was accomplished by model interpreta-
tion using the ‘DALEX’ software package. By comparing 
residual, root mean squared error (RMSE) and diagnostic 
performance of four models, we found the SVM model 
exhibited relatively minor residual differences (Fig.  4A 
and B) and RMSE (Fig. 4C), as well as the optimal ROC 
value (SVM:0.853, GLM:0.822, XGB:0.784, RF:0.775) 
(Fig.  4D). So we selected the top five genes (GYS1, 
MYH10, SLC3A2, CAPZB and PDLIM1) from the SVM 
model as the key predictors for subsequent analysis.

Next, a nomogram was constructed to evaluate the pre-
dictive efficiency of the SVM model using 110 HCM cases 
in the training dataset (Fig. 5A). Calibration curves and 
DCA were employed to assess the prediction accuracy 
of the nomograms. The calibration curve demonstrated 
minimal error between the actual and predicted risks in 
the HCM cluster (Fig.  5B). The predictive capability of 
core biomarkers was verified using the validation datas-
ets GSE141910 and GSE160997. The ROC curves showed 
that the predictive model containing the five core mark-
ers performed well with AUCs of 0.974 (GSE141910) and 
0.911 (GSE160997) (Fig.  5C-F). Notably, MYH10 stood 
out for its best performance with AUCs among all five 
genes in GES141910 dataset (Fig. 5D), and ranked second 
in GSE160997 dataset (Fig.  5F). These results indicated 
the effectiveness of the diagnostic model in distinguish-
ing HCM patients from normal people.

CeRNA network establishment and drug prediction
To better understand the regulation mechanisms of these 
key genes, we constructed a ceRNA network using data-
bases including miRanda, targetScan, miRDB and Spong-
eScan. This network comprises 153 nodes, including 4 
core diagnostic markers (SLC3A2 could not be found 
in the database), 38 microRNAs (miRNA), and 111 long 
non-coding RNAs (lncRNA) (Fig.  6). In the network, 6 
miRNAs regulated by 19 lncRNAs could competitively 
bind with GYS1 mRNA. 16 miRNAs regulated by 28 
lncRNAs bind with MYH10 mRNA. 12 miRNAs regu-
lated by 59 lncRNAs were identified to target to CAPZB 
mRNA. Additionally, 4 miRNAs regulated by 5 lncRNAs 
were identified to bind with PDLIM1, forming a complex 
network. (Fig.  6A). Notably, the ceRNA network pre-
dicted the regulatory role of RP11-186N15.3 targeted all 
the five core diagnostic genes simultaneously.

Drug prediction targeting the five core diagnostic genes 
was performed using the CTD database and visualized 
using the Cytoscape software (Fig.  7A, Supplementary 
Table S1). Drug testing showed that resveratrol (RSV) 
could simultaneously act on the five core diagnostic 

markers with molecular docking conducted with the five 
markers (Fig. 7B), indicating the potential role of RSV in 
the treatment of HCM.

Five core markers were validated in HCM animal model
Finally, we established an HCM mouse model using TAC 
operation to verify these diagnostic markers in vivo. Ani-
mal ultrasound showed that, compared to control, HCM 
model had increased IVS; d, IVS; s and LVD mass, sug-
gesting left ventricular hypertrophy, and decreased ejec-
tion fraction and fractional shortening, indicating left 
ventricular dysfunction (Supplementary Fig. 2C). In addi-
tion, masson and HE staining suggested increased myo-
cardial fibrosis and disordered myocardial alignment in 
HCM mice (Fig.  8A). These results confirmed the suc-
cessful establishment of HCM model. Subsequently, we 
separated the mice’s heart tissue and conducted RNA-
seq to validate the differences in the expression of 5 key 
genes. As shown in Fig.  8B, the mRNA expressions of 
Gys1, Myh10 and Pdlim1 were obviously increased while 
Slc3A2 and Capzb were down-regulated in HCM mice. 
At the protein level, immunohistochemistry and west-
ern blot results showed a significant increase of GYS1, 
MYH10 and PDLIM1 expressions and a decrease of 
SLC3A2 and CAPZB exprssions, aligning with previous 
findings (Fig. 8C-E).

In conclusion, we identified 16 DRGs that are signifi-
cantly associated with the occurrence of HCM. Among 
the machine learning models, the SVM model stood 
out as the optimal model, with five key genes identi-
fied as GYS1, MYH10, SLC3A2, CAPZB and PDLIM1. 
Validation of these core genes using the GSE141910 
and GSE160997 datasets showed excellent performance. 
Then, the ceRNA network was constructed, indicating 
the regulatory mechanisms of the five core genes. Drug 
prediction analysis suggested that resveratrol targeting 
all five markers may have therapeutic benefits for HCM. 
Importantly, in vivo experiments using the HCM mouse 
model verified the expression changes of the five mark-
ers. Our results provided potential disulfidptosis-related 
markers for HCM occurrence and suggested a therapeu-
tic effect of resveratrol on HCM.

Discussion
Hypertrophic cardiomyopathy is a hereditary disease 
with high clinical incidence. Traditionally, HCM is 
regarded as the most common single-gene genetic myo-
cardiopathy with the mutation of sarcomere gene (Maron 
et al. 2022). However, there are still approximately 40% of 
HCM patients without mutations and the pathogenesis 
of HCM has not been fully elucidated. Consequently, it 
is critical to decipher the regulatory mechanisms in the 
occurrence and development of HCM and identify new 
biomarkers and therapeutic targets (Maron and Maron 
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2013). Recent research has highlighted disulfidptosis as a 
novel form of cell death but its relationship with HCM 
has not been studied yet. In this study, we demonstrated 
that disulfidptosis is a critical cell death program in HCM 

and five related genes (GYS1, MYH10, PDMIL1, SLC3A2, 
CAPZB) played an important role in the pathological 
process through comprehensive screening and experi-
ment validation. This research aimed to devise an HCM 

Fig. 4 Construction and evaluation of four machine learning models. (A) Cumulative residual distribution of SVM, RF, XGB, GLM models. (B) Boxplots rep-
resenting the residuals of each machine learning model. (C) Feature importance of top 10 DRGs in each machine learning model. (D) Receiver Operating 
Characteristic (ROC) analysis of four machine learning models
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diagnostic model centered on DRGs and put forward 
potential therapeutic drugs, offering insights into HCM 
diagnosis and therapeutic approaches.

Our study identified 16 differentially expressed disul-
fidptosis-related genes in HCM patients, including upreg-
ulation of GYS1, NDUFS1, NDUFA11, DSTN, MYH10, 
PDLIM1, OXSM and downregulation of SLC3A2, RNP1, 
ACTIN4, ACTB, CAPZB, FLNA, IQGAP1, MYH9 and 
TLN1 (Fig. 2). Apart from disulfidptosis, these genes play 
distinct roles in cardiovascular diseases, so they display 
different expression patterns in HCM patients. Among 

these genes, ACTB was reported to be lowly expressed 
in HCM peripheral blood samples (Feng and Han 2022), 
which is consistent with our findings. In addition, some 
literature also evidenced the differential expressions of 
ACTB in a variety of cardiovascular diseases (Wang et 
al. 2019; Xue et al. 2018). GYS1, which was increased in 
HCM patients by our findings, has been reported to be 
related to heart metabolism and cardiac diseases (San-
tamans et al. 2021). SLC3A2, which was found to be 
associated with ferroptosis and atherosclerosis plaque 
progression (Xiang et al. 2023), was decreased in HCM 

Fig. 5 Validation of the 5-gene-based SVM model. (A) Construction of a nomogram for predicting the risk of HCM based on the 5-gene-based SVM 
model. (B) Calibration curve for assessing the predictive efficiency of the nomogram model. (C, D) ROC analysis of the prediction nomogram based on 
5-fold cross-validation in validation dataset GSE141910. (E, F) ROC analysis of the prediction nomogram based on 5-fold cross-validation in validation 
dataset GSE160997
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patients. FLNA, a large actin-binding cytoskeletal pro-
tein that is important for cell motility by stabilizing actin 
networks, has been shown to mediate the progression of 
myocardial infarction and atherosclerosis (Bandaru et 
al. 2015, 2019). Interestingly, MYH9 and MYH10 genes 
encode distinct myosin heavy chain proteins from MYH7 
genes, whose mutation would lead to the occurrence of 
HCM (McKenna and Judge 2021), indicating their poten-
tial roles in the occurrence and progression of HCM. 
Thus, these findings identified the markers as impor-
tant novel mediators of HCM and potential targets for 
therapy.

The immune system plays a crucial role in cardiac 
function, which is significant in HCM. It triggers infam-
matory responses and subsequent myocardial repair fol-
lowing injury (Rurik et al. 2021). Further analysis revealed 
the relationship between immune responses and HCM. 7 
of 22 immune cells changed their infiltration pattern in 
HCM patients, specifically, increased proportion of naïve 
B cells, regulatory T cells (Tregs), gama delta T cells, 
resting NK cells and M2 macrophages, and decreased 
proportion of monocytes and activated dendritic cells. 
Studies have shown that macrophages play an impor-
tant role in the initial infammatory process and subse-
quent wound healing of myocardial injury (Dick et al. 

2019; Jia et al. 2022; Wong et al. 2021). In the early stage 
of cardiac injury, macrophages are usually polarized to 
pro-infammatory M1 type, which accelerates injury by 
secreting pro-infammatory cytokines. While in the late 
stage of injury, M2 macrophages were recruited, which 
inhibit the expression of collagenase and matrix metal-
loproteinases by stimulating the synthesis and secretion 
of extracellular matrix (ECM) proteins, promoting tis-
sue repair (Jia et al. 2022). Both B and T lymphocytes are 
important in cardiac homeostasis and response to injury. 
The imbalance of T cell subgroups is closely related to 
the occurrence and development of myocarditis (Axelrod 
et al. 2022; Hua et al. 2020; Xia et al. 2020). Especially, 
Tregs are critical in maintaining immune homeostasis 
and regulating infammatory disease progressions (Saka-
guchi et al. 2020). It has been widely reported that Tregs 
have a protective role in heart injury, including myocar-
dial infarction (MI) and myocarditis, by alleviating local 
infammation, protecting cardiomyocytes from apoptosis 
and modulating macrophage differentiation and myofi-
broblast activation (Xia et al. 2020; Weirather et al. 2014; 
Sharir et al. 2014; Tang et al. 2012). Thus, the enhanced 
infiltration of M2 macrophages and Tregs may be a self-
protective mechanism in HCM patients.

Fig. 6 CeRNA network based on five-core DRGs. The yellow nodes represent mRNAs, purple nodes represent miRNAs and green nodes represent lncRNAs
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Fig. 7 Prediction of chemicals targeting the five core markers. (A) Drug-gene network. Chemical ID in red color represents resveratrol. (B) Molecular dock-
ing schematic diagrams of resveratrol docked with five core markers respectively
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Fig. 8 In vivo validation of the five disulfidptosis-related markers in HCM mice. (A) Masson and HE staining of control and TAC mice. (B) Heatmap of the 
relative mRNA expressions of Gys1, Myh10, Capzb, Slc3a2 and Pdlim1 in control and HCM mice heart tissues (n = 3). (C) Typical images of immunohisto-
chemical staining of GYS1, MYH10, CAPZB, SLC3A2 and PDLIMI in heart tissues of control and HCM mice. (D) Protein expressions of GYS1, MYH10, CAPZB, 
SLC3A2 and PDLIMI in control and HCM heart tissues detected by Western Blot. (E) Quantitative analysis of the Western Blot results. Data are representa-
tive of three independent experiments and presented as mean ± SD. Statistical significance was analyzed by unpaired Student’s t-test. ns, no significant, 
* p< 0.05, ** p< 0.01
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Moreover, the correlation analysis revealed that disul-
fidptosis may occur in naïve B cells, activated dendritic 
cells, neutrophils, activated NK cells, naïve CD4+ T cells 
and CD8+ T cells (Fig. 2F). However, research on the role 
of disulfidptosis in immune cells is limited, mainly focus-
ing on the cancer field. For example, the disulfidptosis-
related gene SLC7A11 is proposed to potentially emerge 
as a new prognostic biomarker for hepatocellular carci-
noma (HCC), presenting opportunities for developing 
personalized cancer immunotherapy strategies (Li et al. 
2023). Furthermore, immune checkpoint genes, such as 
TNFRSF14, TNFRSF4, TNFSF4, BTN2A1, and BTN2A2, 
are suggested to have a strong correlation with disulfidp-
tosis and may play an essential role in enhancing tumor 
immunity (Chen et al. 2023a, b). In addition, a group of 
disulfidptosis-related genes (GYS1, LRPPRC, NDUFA11, 
OXSM, RPN1, SLC3A2, and SLC7A1) are found to infu-
ence the prognosis of bladder urothelial carcinoma via 
immune cell infiltration (Xin et al. 2023).

Machine learning, an artificial intelligence technology, 
enables computers to learn laws from data and realize 
prediction ability. Its principle is to use algorithms and 
mathematical models to analyze data, identify patterns 
and trends, and make adjustments to improve accuracy 
(Greener et al. 2022). Five core DRGs (GYS1, MYH10, 
PDLIM1, SLC3A2 and CAPZB) were identified by SVM 
model, which stood out for the best performance and 
accuracy. Importantly, IHC and WB results of heart tis-
sues from HCM mice were consistent with preliminary 
bioinformatics analysis, further proving the potential of 
these genes as diagnostic and therapeutic targets.

Subsequently, drugs targeting these core genes were 
predicted with CTD database. Mentionably, resveratrol 
(RSV), a natural polyphenol that can be extracted and 
purified from wine and grapes, was screened as a chemi-
cal that targeted all the five core markers, indicating its 
potential therapeutic effect on HCM. In fact, the protec-
tive effect of RSV on cancer, infammatory and cardiovas-
cular diseases has been widely reported (Song et al. 2020; 
Ren et al. 2021). Several studies have shown that car-
diomyocyte-specific LKB1 deletion could lead to hyper-
trophic cardiomyopathy (Molaei et al. 2022; Ikeda et al. 
2009). Interestingly, the cardioprotective effect of RSV 
was reported to be associated with LKB1 activity (Huang 
et al. 2021), exhibiting the potential therapeutic function 
of RSV on HCM. Further studies should be focused on 
the specific effects and underlying mechanisms of RSV in 
HCM treatments.

However, our study still has some limitations. Firstly, 
more clinical data on HCM patients are needed to vali-
date the expression levels of DRGs. Secondly, increas-
ing the sample size is essential to improve the accuracy 
of the DRGs-based model. Last but not least, additional 

experiments are needed to evaluate the therapeutic effect 
of resveratrol on HCM.
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