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Abstract 

Background Diabetic ketoacidosis (DKA) is a serious complication of type 1 diabetes (T1D), arising from relative 
insulin deficiency and leading to hyperglycemia, ketonemia, and metabolic acidosis. Early detection and treatment 
are essential to prevent severe outcomes. This pediatric case–control study utilized plasma metabolomics to explore 
metabolic alterations associated with DKA and to identify predictive metabolite patterns.

Methods We examined 34 T1D participants, including 17 patients admitted with severe DKA and 17 age- and sex-
matched individuals in insulin-controlled states. A total of 215 plasma metabolites were analyzed using proton 
nuclear magnetic resonance and direct-injection liquid chromatography/mass spectrometry. Multivariate statistical 
methods, machine learning techniques, and bioinformatics were employed for data analysis.

Results After adjusting for multiple comparisons, 65 metabolites were found to differ significantly 
between the groups (28 increased and 37 decreased). Metabolomics profiling demonstrated 100% accuracy in dif-
ferentiating severe DKA from insulin-controlled states. Random forest analysis indicated that classification accuracy 
was primarily influenced by changes in ketone bodies, acylcarnitines, and phosphatidylcholines. Additionally, groups 
of metabolites (ranging in number from 8 to 18) correlated with key clinical and biochemical variables, including pH, 
bicarbonate, glucose, HbA1c, and Glasgow Coma Scale scores.

Conclusions These findings underscore significant metabolic disturbances in severe DKA and their associations 
with critical clinical indicators. Future investigations should explore if metabolic alterations in severe DKA can identify 
patients at increased risk of complications and/or guide future therapeutic interventions.
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Introduction
Type 1 diabetes (T1D) is a global health issue, primar-
ily affecting children and young adults, with incidence 
rates doubling every decade (Mobasseri et  al. 2020). 
The key pathology is insulin deficiency due to immune-
mediated destruction of pancreatic β cells, leading to 

hyperglycemia (Katsarou et  al. 2017). Common symp-
toms at presentation include weight loss, polyuria, and 
polydipsia (Nigrovic et al. 2023).

Diabetic ketoacidosis (DKA) is a common complica-
tion of T1D, occurring when insulin deficiency is severe 
or counter-regulatory hormones rise during stress 
(Segerer et al. 2021; Vicinanza et al. 2019). DKA is diag-
nosed by hyperglycemia, ketonemia, and metabolic 
acidosis (Dhatariya et  al. 2020; Calimag et  al. 2023). If 
untreated, hyperosmolality, acidosis, and a catabolic 
state can lead to lethargy, coma, cardiovascular collapse, 
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and death (Siqueira 2011; Bialo et  al. 2015). Treatment 
involves intravenous fluids and insulin (Castellanos et al. 
2020; Jayashree et al. 2019), but children and adolescents 
are particularly vulnerable to complications, notably life-
threatening cerebral edema (Segerer et  al. 2021; Wolfs-
dorf et al. 2006).

Metabolomics refers to a set of methodologies for 
investigating a large spectrum of endogenous metabolites 
in human fluids and may provide one of the clearest pic-
tures of human phenotype and medical condition. Com-
monly used metabolomic analytical techniques include 
nuclear magnetic resonance (NMR) and mass spectrom-
etry (MS). Potential advantages of metabolomics include 
biomarker discovery, as well as providing a greater under-
standing of disease pathogenesis and toxicity (Beckonert 
et al. 2007; Bingol et al. 2015; Markley et al. 2017).

While the metabolic pathophysiology of DKA has been 
studied, comprehensive pathway analysis is lacking. In 
adult patients, metabolomics profiling has been used to 
delineate several altered metabolic pathways in T1D and 
type 2 diabetes, while a limited number of metabolites 
have been investigated in a small number of adult DKA 
patients (Jahoor et al. 2021; Jin and Ma 2021).

In this case–control study, we hypothesized that 
diabetic ketoacidosis (DKA) would exhibit a distinct 
metabolite profile compared to insulin-controlled type 
1 diabetes (T1D) participants, matched by age and sex. 
Furthermore, we aimed to identify specific metabolites 
that are associated with key clinical correlates of DKA 
and its metabolic consequences, including pH, bicarbo-
nate levels, glucose, HbA1c, and Glasgow Coma Scale 
(GCS). Our aims were: (1) to measure plasma metabolites 
with two complementary techniques, direct-injection liq-
uid chromatography/mass spectroscopy (DI-LC/MS/MS) 
and proton nuclear magnetic resonance (1H NMR); (2) 
to compare metabolomic profiles; and (3) to determine 
specific metabolite patterns associated with DKA clinical 
characteristics.

Methods
Study design and participants
Patients with T1D were recruited from the Chil-
dren’s Hospital, London Health Sciences Centre (Lon-
don, Ontario, Canada). DKA was diagnosed based on 
hyperglycemia (blood glucose > 11  mmol/L), bicar-
bonate < 15  mmol/L, and ketonuria, and classified as 
mild (venous pH < 7.3), moderate (pH < 7.2), or severe 
(pH < 7.1). We enrolled only patients with severe DKA 
admitted to the pediatric critical care unit (PCCU) over 
a two-year period. Insulin-controlled T1D patients, with 
no history of DKA for at least 3  months, were enrolled 
from an outpatient clinic. A convenience sampling 
method was used, as accurate sample size calculations 

are not feasible in large-scale metabolomic studies where 
effect size and variance are unknown.

Blood collection and processing
Blood samples intended for both proteomic analyses 
and routine DKA laboratory testing were collected at 
PCCU admission prior to insulin administration. In all 
cases, normal saline was being administered. Samples 
were drawn into citrate-containing tubes (Vacutainers; 
BD Biosciences, Mississauga, Canada) by certified nurs-
ing personnel, kept on ice, and promptly transported to 
the Translational Research Centre facility for process-
ing according to standard operating procedures (www. 
trans latio nalre search. ca; London, Canada). The blood 
was centrifuged at 1,500 x g for 15 min at 4  °C, and the 
upper plasma layer was aliquoted into 250  µL portions. 
The buffy coat was then removed and aliquoted. Both 
plasma and buffy coat aliquots were immediately fro-
zen at − 80 °C for later use. For experiments, plasma was 
thawed and kept briefly on ice, with precautions taken to 
avoid freeze–thaw cycles.

DI‑LC/MS/MS
A targeted quantitative metabolomics approach was 
applied to analyze the plasma samples using a com-
bination of direct injection mass spectrometry 
 (AbsoluteIDQ™ Kit) with a reverse-phase LC/MS/MS Kit 
(BIOCRATES Life Sciences AG, Austria). The method 
combines the derivatization and extraction of analytes, 
and selective mass-spectrometric detection using multi-
ple reaction monitoring pairs (standards are integrated in 
the Kit plate filter for metabolite quantification). Briefly, 
plasma samples were thawed on ice and then vortexed 
and centrifuged at 13,000 × g. Each plasma sample (10 µL) 
was loaded onto the center of the filter on the upper 
96-well kit plate and dried in a stream of nitrogen. Subse-
quently, 20 µL of a 5% solution of phenyl-isothiocyanate 
was added for derivatization. After incubation, the filter 
spots were dried again using an evaporator. Extraction 
of the metabolites was then achieved by adding 300  µL 
methanol containing 5  mM ammonium acetate. The 
extracts were obtained by centrifugation into the lower 
96-deep well plate, followed by a dilution step with kit 
MS running solvent. Mass spectrometric analysis was 
performed on an API4000  Qtrap® tandem mass spec-
trometry instrument (Applied Biosystems/MDS Ana-
lytical Technologies, Foster City, CA) equipped with a 
solvent delivery system. The samples were delivered to 
the mass spectrometer by LC followed by a DI. The Bio-
crates MetIQ software was used to control the entire 
assay workflow, from sample registration to automated 
calculation of metabolite concentrations. A targeted pro-
filing scheme was used to quantitatively screen for known 
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small molecule metabolites using multiple reaction mon-
itoring, neutral loss and precursor ion scans. A total of 
178 compounds were analyzed with DI-LC/MS/MS, cat-
egorized as follows: acylcarnitines (40), amino acids (20), 
biogenic amines (12), glycerophospholipids (90), sphin-
golipids (15), and sugars (1). Notably, many of the lipids 
and the single sugar (Hexose) represented groups of mol-
ecules rather than individual species.

1H NMR
Plasma samples were deproteinized using ultra-filtration 
(Psychogios et al. 2011). Prior to filtration, 3 KDa cut-off 
centrifugal filter units (Amicon Microcon YM-3) were 
rinsed five times each with 0.5  mL of H2O and centri-
fuged (10,000  rpm for 10  min) to remove residual glyc-
erol bound to the filter membranes. Aliquots of each 
plasma sample were then transferred into the centrifuge 
filter devices and centrifuged (10,000  rpm for 20  min) 
to remove macromolecules (primarily protein and lipo-
proteins) from the sample. The filtrates were collected, 
and the volumes were recorded. The volume of the sam-
ple was adjusted with the addition of 50  mM  NaH2PO4 
buffer (pH 7.0) until the total volume of the sample was 
600  µL. Any sample that had to have buffer added to 
bring the solution volume to 600 µL, was annotated with 
the dilution factor and metabolite concentrations were 
corrected in the subsequent analysis. Subsequently, 70 µL 
of  D2O and 30 µL of a standard buffer solution (11.7 mM 
DSS [disodium 2, 2-dimethyl-2-silcepentane-5- sulpho-
nate], 730 mM imidazole, and 0.47%  NaN3 in H2O) was 
added to the sample. The plasma sample (700  µL) was 
then transferred to a standard NMR tube for subsequent 
spectral analysis. All 1H-NMR spectra were collected on 
a 500 MHz Inova (Varian Inc. Palo Alto, CA) spectrom-
eter equipped with a 5 mm HCN Z-gradient pulsed-field 
gradient room temperature probe. Proton NMR spec-
tra were acquired at 25 °C using the first transient of the 
NOESY-pre-saturation pulse sequence, chosen for its 
high degree of quantitative accuracy (Saude et al. 2006). 
All free induction decays were zero-filled to 64  K data 
points and subjected to a line broadening of 0.5 Hz. The 
singlet produced by the DSS methyl groups was used as 
an internal standard for chemical shift referencing (set to 
0 ppm) and for quantification, all 1H-NMR spectra were 
processed and analyzed using the Chenomx NMR Suite 
Professional Software package version 7.1 (Chenomx 
Inc, Edmonton, AB). The Chenomx NMR Suite soft-
ware allows for qualitative and quantitative analysis of an 
NMR spectrum by manually fitting spectral signatures 
from an internal database to the spectrum. Specifically, 
the spectral fitting for metabolites was performed using 
the standard Chenomx 500 MHz metabolite library. Typ-
ically, 90% of visible peaks were assigned to a compound 

and more than 90% of the spectral area could be routinely 
fit using the Chenomx spectral analysis software. Most of 
the visible peaks are annotated with a compound name. 
It has been previously shown that this fitting procedure 
provides an absolute concentration accuracy of 90% or 
better. Each spectrum was processed and analyzed by at 
least two NMR spectroscopists to minimize compound 
misidentification and incorrect  quantification. We used 
sample spiking to confirm the identities of assigned com-
pounds. The NMR data set identified 37 unique metabo-
lites that were predominantly amino acids.

Statistical analysis
Duplicates were first removed, with DI-LC/MS/MS val-
ues preferred over those determined with 1H NMR. Nor-
malized data were then used for statistical hypothesis 
testing to identify metabolites that are significantly dif-
ferent between sample groups. Statistical comparisons 
were conducted using empirical Bayes moderated t-tests, 
implemented through the limma R package. P-values 
were adjusted for multiple testing to control the false dis-
covery rate. For each comparison (e.g., DKA vs. CON), 
a positive log2(fold change) indicates up-regulation in 
DKA relative to CON, while a negative log2(fold change) 
indicates down-regulation.

Metabolite feature importance in classification
Raw metabolite data from 34 participants were processed 
to identify key features for classification. A random for-
est model comprising 20,000 decision trees (maximum 
depth of 3 leaves) was trained for this classification 
task. The Boruta feature selection method was subse-
quently applied to the trained classifier (Kursa and Rud-
nicki, 2010), resulting in the identification of 54 features 
deemed significant for classification. A second random 
forest model (20,000 estimators, maximum depth of 3) 
was then trained using only these 54 selected features to 
assess the relative importance of each metabolite.

Clinical features‑metabolite associations
A sparse linear regression was conducted using the L1 
norm as a regularizer (Lasso regression with alpha = 0.01) 
to analyze the relationship between the 20 most impor-
tant metabolites and each clinical observable. Prior to 
the Lasso regression analysis, each metabolite was stand-
ardized to have a mean of zero and unit variance. The 
residual sum of squares (RSS) was calculated to evalu-
ate the model’s fit to the data. All analyses and visuali-
zations were performed using Python 3.11.8, along with 
the pandas 2.2, numpy 1.26.4, and mne-connectivity 0.7.0 
libraries.
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Pathway analyses
To identify enriched pathways, we utilized the KEGG 
Homo sapiens pathway library. Pathway enrichment was 
assessed using the Globaltest statistical technique, which 
allowed us to quantify the number of compounds asso-
ciated with each pathway and identify significant hits 
from the uploaded data. We conducted a comprehensive 
evaluation of significance by examining raw and adjusted 
p-values, false discovery rates (FDR), and pathway impact 
based on topological analysis. Given that our primary 

objective was to pinpoint the most relevant pathways, 
the rank of each pathway was prioritized over absolute 
p-values.

Results
Patient variables
The demographic and laboratory values for all study 
T1D patients are presented in Fig. 1A. The 34 DKA and 
CON patients were age- and sex-matched, and the body 
mass index z scores were similar between groups and 

Fig. 1 Clinical and biochemical data for DKA patients supplemented with heatmaps showing the strength of association between covariates. 
A T1D diagnosis was based on clinical and biochemical criteria. Type 1 diabetes-related autoantibodies were only measured if the diagnosis 
was equivocal due to the presence of clinical and demographic risk factors for type 2 diabetes (n = 3; T1D was confirmed by positive islet-cell 
antibodies and antibodies to glutamic acid decarboxylase. Glasgow Coma Scale (GCS) was determined on admission to the pediatric critical care 
unit. CON Insulin-controlled patients, DKA acute Diabetic Ketoacidosis (n = 17/group). BMI and BMI z-scores (kg/m2) were calculated from the U.S. 
Centers for Disease Control and Prevention reference data (n = 14–17/group). Data presented as mean ± SEM. N/A; blood not tested due to lack 
of clinical indication. B Continuous heatmap showing associations between all factors in the study. P-values are written as -log10(p-value) 
and depicted as continuous gradients with darker blue blocks indicating stronger associations. The significant threshold was set at P < 0.05 
and the P-values were adjusted for multiple testing using Benjamini–Hochberg correction. C Discrete heatmap showing associations between all 
factors in the study. The strength of the associations is defined by the color of the blocks as non-significant (white), significant at p-value < 0.05 
(pink), significant at FDR < 0.05 (red)
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consistent with T1D. Patients with DKA had signifi-
cantly lower GCS (GCS 15, n = 8; GCS 14, n = 4; GCS 13, 
n = 1; GCS 12, n = 1; GCS 10, n = 2; GCS 8, n = 1), sug-
gesting DKA-induced mild brain dysfunction (p < 0.001). 
Higher HbA1c values were measured in DKA patients as 
opposed to CON patients (p < 0.001), indicating elevated 
blood glucose over the previous 2–3  months (Eyth and 
Naik 2023). DKA patients all had elevated blood glu-
cose, elevated blood ketones and metabolic acidosis on 
blood gas measurements (p < 0.001). The duration of T1D 
was 4.1 ± 1.3  years (range 6  months to 10  years; HbA1c 
7.6 ± 0.3) for the insulin-controlled participants. Of the 
DKA patients, 9 were participants with  known T1D 
(duration 3.6 ± 1.7, range 1 to 7  years; HbA1c 9.9 ± 1.6) 
and 8 participants  were newly diagnosed T1D (HbA1c 
12.6 ± 1.7). The Hb1Ac measurements from DKA patients 
that were known T1D versus new onset T1D were signifi-
cantly different (P = 0.010).

Metanalyses
Heatmaps illustrate the strength of association between 
biochemical and clinical covariates in the samples. In 
Fig. 1B, associations are represented as − log10(p-value), 
with darker blue blocks indicating stronger associations. 
Conversely, Fig.  1C uses color coding to denote signifi-
cance levels: non-significant associations are shown in 
white, significant at p < 0.05 in pink, and significant at 
FDR < 0.05 in red. The significance threshold was set at 
p < 0.05, with p-values adjusted for multiple compari-
sons using the Benjamini–Hochberg correction. Both 
heatmaps reveal similar patterns, with two notable corre-
lations: between bicarbonate and pH, and between bicar-
bonate and GCS scores.

Figure 2 displays the results of the normalized quality 
control processes for both MS and NMR data. Principal 
component analysis (PCA) revealed a clear separation 
between the cohorts (n = 17/cohort). The scatterplot 
shows that patients with insulin-controlled diabetes clus-
tered tightly, whereas those with DKA exhibited a more 
heterogeneous distribution, distinctly separated from the 
control group. This differentiation highlights significant 
metabolic differences between the groups and under-
scores the considerable impact of DKA on the data.

Metabolites expression and profiling
In plasma, 178 metabolites were identified using DI/
LC–MS/MS, while 37 metabolites were identified using 
NMR. Among these, 34 metabolites identified by NMR 
and 77 identified by MS were found to be statistically sig-
nificant with an adjusted p-value < 0.05, some of which 
exhibited substantial fold changes (Fig.  3). Of the 77 
metabolites identified by MS, 37 were downregulated 
and 40 were upregulated. The most notably upregulated 

metabolites included tryptophan, arginine, and trans-
OH-proline, whereas C2, C3-DC (C4-OH), PC, and PC 
aa C36:4 was significantly downregulated. Similarly, 
NMR analysis revealed that 9 out of 34 metabolites were 
upregulated and 25 were downregulated. The most sig-
nificantly altered NMR metabolites included the down-
regulated glutamine, methanol, and carnitine, as well as 
the upregulated 3-hydroxybutyrate, acetoacetate, and 
acetone. Supplementary Table  1 presents the combined 
list of metabolites, both DC/LC–MS/MS and NMR, with 
their respective adjusted p-values resulting in a total of 
65 metabolites that differed significantly between groups 
(28 increased, 37 decreased).

Feature importance was assessed using random forests, 
resulting in a ranked list of metabolites contributing to 
the variance between DKA and CON patients (Supple-
mentary Table 2). A notable finding was the high variabil-
ity in feature importance across the metabolite dataset. 
Detailed analysis revealed that key DKA metabolites, 
such as ketones, were highly ranked, with over half of the 
top 54 metabolites categorized into just two classes: 19 
acylcarnitines (C) and 16 phosphatidylcholines (PC and 
lysoPC).

Clinical‑metabolite associations
The clinical-metabolite associations are demonstrated 
graphically in Fig.  4. After conducting Lasso regres-
sions, which perform linear regression with regulariza-
tion to shrink the coefficients toward zero, we identified 
metabolite profiles that associated with clinically relevant 
characteristics of DKA. This analytic approach allowed 
us to determine which specific metabolites had non-zero 
coefficients, indicating their predictive value for clinical 
variables. We evaluated five clinical correlates: pH (RSS 
0.08), bicarbonate (RSS 0.4), glucose (RSS 1.27), HbA1c 
(RSS 1.34), and GCS (RSS 0.67). Each clinical correlate 
was effectively associated by a panel of 8–18 metabolites.

Pathways of interest
Pathway enrichment analysis was performed using the 
KEGG Homo sapiens pathway library, and the results 
are displayed in Fig.  5, which includes both a list and a 
scatterplot of the most significant pathways. Figure  5A 
presents pathway impact versus statistical significance 
(−  log10(p-value)), with a significance cutoff set at an 
adjusted p-value < 0.05. This analysis identified six promi-
nently enriched pathways: “Synthesis and degradation of 
ketone bodies,” “Butanoate metabolism,” “Arginine and 
proline metabolism,” “Tyrosine metabolism,” “Arginine 
biosynthesis,” and “Glycine, serine, and threonine metab-
olism.” Notably, “Phenylalanine, tyrosine, and trypto-
phan biosynthesis” exhibited the highest impact, despite 
its lower statistical significance. The Globaltest method 
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Fig. 2 Quality control and exploratory data analysis showing associations, potential grouping, and degree of correlation between samples. A1 
A scatterplot for the first two principal components from the Imputed MS data dataset. Colors represent different factors in the dataset. Samples 
are expected to cluster according to one or more experimental factors, which might reveal underlying patterns or groupings. A2 A heatmap 
showing the between-sample pairwise Pearson correlation of the Imputed MS data. Individual samples are shown along both the X and Y axes, 
with the degree of correlation indicated by the colors (yellow: higher correlation, purple: lower correlation). Clustering (Euclidean distance) 
is shown by the dendrograms above and to the left of the image, together with relevant annotation for each sample. B1 A scatterplot for the first 
two principal components from the Supplied NMR data dataset. Colors represent different factors in the dataset. Samples are expected to cluster 
according to one or more experimental factors, which might reveal underlying patterns or groupings. B2 A heatmap showing the between-sample 
pairwise Pearson correlation of the Supplied NMR data. Individual samples are shown along both the X and Y axes, with the degree of correlation 
indicated by the colors (yellow: higher correlation, purple: lower correlation). Clustering (Euclidean distance) is shown by the dendrograms 
above and to the left of the image, together with relevant annotation for each sample
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Fig. 3 Association tests between DKA patients and controls shown graphically through MS and NMR. A1 A volcano plot, derived from MS 
data, showing significance (as -log10 transformed p-values) against magnitude  (log2(fold change)). Metabolites identified as having different 
levels between samples are represented as red (upregulated) or blue (downregulated) dots, the ones listed by name—arginine, tryptophan, 
and trans-OH-Proline were downregulated; C2, C3-DC (C4-OH), and PC aa C36:4 were upregulated—were the most significantly altered. To 
improve performance when there are tens or hundreds of thousands of metabolites the non-significant metabolites (black) displayed are 
a representative subsample of the full dataset. The horizontal orange line represents the applied p-value threshold. A2 Heatmap, derived from MS 
data, shows metabolite intensity per sample relative to the average level across all samples. Individual metabolites are shown on the Y axis 
while samples are shown along the X axis. Red and blue cells correspond to higher and lower metabolomics levels, respectively. A maximum 
of 1000 features and 1000 samples are shown (selected at random when the number exceeds these limits). B1 A volcano plot, derived from NMR 
data, showing significance (as -log10 transformed p-values) against magnitude  (log2(fold change)). Metabolites identified as having different levels 
between samples are represented as red (upregulated) or blue (downregulated) dots, the ones listed by name—glutamine, methanol, and carnitine 
were downregulated; 3-Hydroxyburate, Acetoacetate, and Acetone were upregulated —were the most significantly altered. To improve 
performance when there are tens or hundreds of thousands of metabolites the non-significant metabolites (black) displayed are a representative 
subsample of the full dataset. The horizontal orange line represents the applied p-value threshold. B2 Heatmap, derived from NMR data, showing 
metabolite intensity per sample relative to the average level across all samples. Individual metabolites are shown on the Y axis while samples 
are shown along the X axis. Red and blue cells correspond to higher and lower metabolomics levels, respectively. A maximum of 1000 features 
and 1000 samples are shown (selected at random when the number exceeds these limits)
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Fig. 4 Metabolite panels associated with clinical variables. A Chord diagram illustrating the relationships between the top metabolites and clinical 
features. Clinical biochemistry and GCS were determined on admission to the pediatric critical care unit. Metabolites are positioned between 3:00 
and 12:00, while clinical and demographic features are located between 12:00 and 3:00. Edges are color-coded by metabolite for enhanced clarity. B 
The edges highlight significant associations between metabolites and clinical features, as identified using the Lasso method, with details presented 
in tabular format
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was used to determine significant pathways, focusing on 
pathway ranking rather than absolute p-values. Figure 5B 
provides a detailed list of pathways, including the total 
number of compounds in each pathway (Compounds), 
the number of compounds matching the user-uploaded 
data (Hits), the adjusted p-value < 0.05, the p-value 
adjusted for False Discovery Rate (FDR p < 0.05), and the 
pathway impact value derived from pathway topology 
analysis (Impact).

Discussion
In this study, we used plasma metabolomics profiling 
with two complementary techniques (DI-LC/MS/MS 
and NMR), combined with multivariate statistics and 
machine learning, to identify distinct metabolite pat-
terns in DKA patients compared to CON participants. 
We found 65 metabolites significantly altered in DKA, 
with 28 increased and 37 decreased. Feature ranking 
highlighted the key metabolites driving the differences 
between the cohorts. Pathway analysis revealed links 
between these metabolite changes and underlying patho-
physiological processes, as well as clinical findings. Addi-
tionally, we developed metabolite panels associated with 
key clinical variables in DKA.

Elevated ketone bodies are a hallmark of DKA (Laffel 
1999), and account for 14.9% of the variance between 
DKA and CON patients. Key ketone bodies identified 
include acetone, acetoacetate, and 3-hydroxybutyrate, all 
of which, along with their associated metabolic pathway, 
were significantly enriched. The most altered pathway in 
DKA was the “synthesis and degradation of ketone bod-
ies,” consistent with the known pathophysiological mech-
anisms of metabolic acidosis in DKA (Dhatariya et  al. 
2020; Kraut and Madias 2010). Insulin deficiency, com-
bined with elevated counter-regulatory hormones (Cas-
tellanos et al. 2020; Wolfsdorf et al. 2006), promotes the 
breakdown of non-esterified fatty acids and glycerol to 
generate Acetyl-CoA. While Acetyl-CoA normally enters 
the tricarboxylic acid cycle for ATP production, excess 
Acetyl-CoA is diverted to form 3-hydroxybutyrate and 
acetoacetate, with acetone produced via decarboxylation 
of acetoacetate (Dhatariya et al. 2020; Laffel 1999; Glaser 
2005).

Further pathway analysis revealed enrichment in the 
metabolism of tyrosine and arginine, linking these amino 
acids to specific mechanisms in DKA (Hoffman et  al. 
2021; Szabó et al. 1991). Tyrosine plays a role in inflam-
mation, immune-mediated pancreatic β-cell death, insu-
lin resistance, and glucose metabolism, processes directly 
relevant to DKA. Tyrosine metabolism is well-established 
with new onset T1D but can persist beyond the initial 
disease onset. Inhibition of tyrosine-related proteins can 
improve insulin resistance (Marroqui et  al. 2015; Gur-
zov et  al. 2015; Stanford et  al. 2017). Additionally, both 
the metabolism and synthesis of arginine were enriched. 
Arginine is essential for producing arginine-vasopressin, 
which may contribute to symptoms such as hypertension 
and hyperglycemia associated with glucagon production 
(Charlton et al. 1988; Sparapani et al. 2021; Henningsson 
and Lundquist 1998; Unger et al. 1970).

Acylcarnitines accounted for 23.4% of the variance 
between DKA and CON participants. These metabo-
lites are essential for transporting long-chain fatty acids 
into the mitochondria, where they facilitate fatty acid 
β-oxidation (Dambrova et  al. 2022; Reuter and Evans 
2012). In DKA, insulin deficiency impairs fatty acid oxi-
dation (Dhatariya et al. 2020; Calimag et al. 2023; Wolf-
sdorf et al. 2007), leading to elevated acylcarnitine levels, 
which likely reflect incomplete mitochondrial oxidation. 
Additionally, acylcarnitines can be derived from ketone 
bodies and amino acid degradation products (Dambrova 
et al. 2022; Lysiak et al. 1986; Simcox et al. 2017).

Phosphatidylcholines are the most abundant phospho-
lipids in cell membranes and are vital for lipid metabo-
lism, lipoprotein function, and cell signaling (Murphy 
et  al. 1992; Chen et  al. 2018). Our analysis found that 
phosphatidylcholines account for 9.7% of the variance 
between DKA and CON patients. Insulin typically pro-
motes rapid phospholipase D-dependent hydrolysis 
of phosphatidylcholines, so insulin deficiency in DKA 
may disrupt lipid metabolism. Additionally, changes in 
lysophosphatidylcholine contribute to 5.4% of the vari-
ance between the cohorts. Lysophosphatidylcholine is 
produced by partial hydrolysis of phosphatidylcholines, 
which removes one fatty acid group, and notably, it nega-
tively regulates insulin action (Motley et al. 2002).

Fig. 5 Functional Analysis showing enriched metabolic pathways as a list and graphically. A A scatter plot representing the results of a pathway 
enrichment analysis. The x-axis shows the pathway impact, while the y-axis represents the -log10(p) value, the statistical significance. Each dot 
represents a metabolic pathway, and the color of the dot corresponds to a different pathway category. The top five pathways, ordered by pathway 
effect scores or significance (p-value), are included with their names on the plot. B List of pathways enriched with the Globaltest method using 
the KEGG Homo Sapiens pathway library, comparing the control group with ongoing DKA. The statistical significance of each pathway is ranked, 
and the corresponding values are given. This list elucidates the differential metabolic pathway enrichment linked to DKA

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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Our findings also highlight alterations in lipid metabo-
lism, particularly through the enrichment of pathways 
related to butanoate and proline. Butanoate has been 
linked to lipid and glucose metabolism and is recognized 
as a highly ketogenic component from a nutritional per-
spective (St-Pierre et al. 2017; Zhang et al. 2021). In con-
trast, proline and its metabolism are associated with lipid 
signaling, involving interactions between autophagy and 
oxidized low-density lipoproteins, as well as regular cir-
cadian rhythms (Phang et al. 2010; Gachon et al. 2011).

We identified eight metabolites (2-hydroxybutyrate, 
acetoacetate, acetone, C18:1, C7-DC, PCaaC34:1, tryp-
tophan, and lyso PC a C20:3) associated with pH levels 
in DKA patients. Notably, several of these metabolites 
(2-hydroxybutyrate, acetone, C18:1, C7-DC, PCaaC34:1) 
were also linked to blood bicarbonate levels. The accu-
mulation of ketone bodies in DKA increases hydrogen 
ion concentration, leading to anion gap acidosis. These 
excess hydrogen ions bind to bicarbonate, reducing its 
levels and contributing to the observed decrease in pH 
(Kraut and Madias 2010; Aduen et  al. 1995). While the 
accumulation of fatty acids and phosphatidylcholines 
may influence plasma acidity, their effects are context-
dependent and should be interpreted within the broader 
metabolic framework.

DKA is associated with elevated glucose and HbA1c 
levels, with HbA1c reflecting chronic hyperglycemia over 
the past 2–3 months (Eyth and Naik 2023). Our analysis 
identified several metabolites, including ketones, phos-
pholipids, and amino, carboxylic, and fatty acids, that 
were linked to HbA1c levels. Reduced insulin sensitiv-
ity impairs glucose utilization and promotes ketogen-
esis (Laffel 1999; Wolfsdorf et al. 2007). Additionally, the 
upregulation of pathways involving glycogenic amino 
acids like glycine, serine, and threonine underscores the 
role of hyperglycemia in driving ketosis (Felig et al. 1970).

The level of consciousness, as measured by the GCS, 
was associated with a metabolite panel that included 
both glucose and ketones. Altered consciousness in DKA 
has been linked to the hyperosmolar environment caused 
by elevated glucose levels (Nevo-Shenker and Shalitin 
2021). While the brain can utilize ketone bodies (ace-
toacetate and β-hydroxybutyrate) for energy (Jensen et al. 
2020), studies have shown that direct infusion of ketones 
can decrease levels of consciousness (Svart et  al. 2018). 
Therefore, high concentrations of glucose and ketones, 
along with severe acidosis, may contribute to the tran-
sient effects of DKA on consciousness. Other metabo-
lites, including amino acids, fatty acids, phospholipids, 
and creatinine, were also associated with GCS, but their 
effects appear more indirect, primarily due to alterations 
in energy metabolism and acid–base balance.

The pathway most significantly altered in our DKA 
cohort was the “synthesis and degradation of ketone bod-
ies,” aligning with both the identified metabolites and the 
established pathophysiological mechanisms of metabolic 
acidosis in DKA (Dhatariya et al. 2020; Laffel 1999; Kraut 
and Madias 2010; Glaser 2005). Clinical decompensa-
tion in DKA is often more closely linked to the degree 
of ketosis than to hyperglycemia. In addition to this pri-
mary pathway, we identified enrichment in five other 
major metabolic pathways, consistent with the proteo-
lytic effects of hyperglycemia through glycogenolysis and 
gluconeogenesis. Notable upregulation was observed in 
the metabolism of butanoate, arginine, proline, tyrosine, 
glycine, serine, and threonine (Hoffman et al. 2021; Szabó 
et  al. 1991). Butanoate plays a critical role in lipid and 
glucose metabolism and is a highly ketogenic component 
(St-Pierre et al. 2017; Zhang et al. 2021). Proline metab-
olism is particularly relevant due to its involvement in 
lipid signaling, autophagy, oxidized low-density lipopro-
teins, and circadian rhythms (Phang et al. 2010; Gachon 
et al. 2011) The tyrosine family is significant in DKA for 
its roles in inflammation, insulin resistance, and glucose 
metabolism; inhibiting these proteins can improve insu-
lin sensitivity (Marroqui et  al. 2015; Gurzov et  al. 2015; 
Stanford et  al. 2017). Finally, glycine, serine, and threo-
nine, as glycogenic amino acids, contribute to the severe 
hyperglycemia characteristic of DKA (Felig et al. 1970).

We also found enrichment in the “arginine biosynthe-
sis” pathway. Arginine is critical for producing arginine-
vasopressin, which may contribute to hypertension in 
DKA due to overexpression of counter-regulatory hor-
mones (Charlton et al. 1988; Sparapani et al. 2021). Addi-
tionally, arginine stimulates glucagon production, which 
exacerbates hyperglycemia and acidosis in DKA (Hen-
ningsson and Lundquist 1998; Unger et al. 1970).

Our study provides a comprehensive analysis of the 
metabolite profile in pediatric DKA, though several limi-
tations should be considered. First, while we included a 
balanced but limited number of matched participants, 
our findings remain statistically significant even after cor-
recting for multiple comparisons. These results are con-
sistent with those of similar studies, despite the lack of 
a specific focus on pediatric DKA metabolomics (Jahoor 
et al. 2021; Jin and Ma 2021). Second, we focused only on 
severe DKA patients to examine metabolic changes, but 
future studies should include a broader spectrum of DKA 
severity to improve generalizability. Third, differences in 
T1D duration between cohorts, with some participants 
experiencing DKA as their first manifestation, may have 
influenced the results. Finally, while we identified dif-
ferentially expressed metabolites in DKA plasma, the 
absence of longitudinal samples limits our ability to track 
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changes in metabolite levels over time and in response to 
treatment.

Severe insulin deficiency, coupled with elevated coun-
ter-regulatory hormones, leads to DKA. Our study aimed 
to provide a deeper, more comprehensive understanding 
of the underlying metabolic alterations in DKA beyond 
the typical biochemical markers demonstrated previ-
ously and provide a greater understanding of the meta-
bolic changes associated with the pathophysiology. We 
identified significant disruptions in lipid metabolism and 
mitochondrial function, uncovering key metabolites that 
differentiate DKA patients from controls. Additionally, 
we established metabolite panels that correlate with clini-
cal variables in DKA. Overall, these findings underscore 
the potential of metabolomics profiling as a powerful tool 
for uncovering the metabolic changes underlying DKA 
and advancing its pathophysiological understanding.
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